
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 10,925-945 (1990)

UNSYMMETRIC CONJUGATE GRADIENT METHODS
AND SPARSE DIRECT METHODS IN FINITE

ELEMENT FLOW SIMULATION

D. HOWARD, W. M. CONNOLLEY AND J. S . ROLLETT
Numerical Analysis Group, Oxford University Computing Laboratory, 8-1 I Keble Road, Oxford OX1 3QD. U.K.

SUMMARY

A series of numerical experiments on the Cray XMP/48 and on the Cray 2 investigate the robustness and
economy of direct and unsymmetric conjugate gradient (CG) type methods for the solution of matrix
systems arising from a 3D FEM discretization of fluid flow problems. Computations on a Boussinesq flow
model problem with either ILU preconditioned or unpreconditioned unsymmetric CG methods are
presented. Such experiments seem to indicate that the unpreconditioned BICG method is robust for
moderately non-linear incompressible Navier-Stokes FEM discretizations and that the ILU preconditioned
BICG method is very robust and more economic than an unsymmetric frontal solver when the generous
memory of the Cray 2 is exploited to store both the matrix and its preconditioner. We cover some of the
programming aspects of direct and iterative methods on a supercomputer and find that direct methods have
advantages: the crucial CPU-consuming area of code is compact but overwhelming, and its percentage of
total CPU usage is independent of the spectral properties of the matrix involved. An optimal imple-
mentation of the unsymmetric CG method is more difficult because its work is related to the spectral
distribution of the matrix considered and because there is no single portion of the code that overwhelmingly
dominates the CPU usuage.

KEY WORDS Bi-conjugate gradient Conjugate gradient Conjugate gradient squared Finite elements
Flow simulation Preconditioning Vector processor Frontal solver Navier-Stokes Boussinesq approximation
Newton method Picard iteration Galerkin method PetrovCIalerkin

1. INTRODUCTION

The simulation of 3D engineering problems by implicit finite element methods' (FEM) represents
a computational challenge because non-linear FEM models often require repeated solutions to a
linearized system - a banded matrix problem. The choices for the method of solution to this
matrix problem can be classified into direct and iterative. Global matrices can be very large and
will typically require the use of a supercomputer or parallel architecture for solution. Fast
methods such as conjugate gradient (CG) are suitable for symmetric systems. These are direct
methods since they have a finite termination using exact arithmetic, but are classified as iterative
because the round-off errors lose this theoretical property and because a satisfactory solution can
often be obtained in far fewer than the theoretical maximum number of steps.

CG methods often require some form of preconditioning in order to improve upon the
distribution of the eigenvalues or singular values of the matrix system to speed up the rate of
convergence. The simplest preconditioner is diagonal scaling. More elaborate preconditioners
such as incomplete factorization require both the extra work associated with a direct method and
the additional storage requirement of the preconditioner. There exist preconditioners which use

027 1-2091/90/080925-20$10.00
0 1990 by John Wiley & Sons, Ltd.

Received August 1988
Revised November 1989

926 D. HOWARD, W. M. CONNOLLEY AND J. S. ROLLETT

parts of the global matrix incurring no significant extra work or storage, i.e. those based on
SSOR.’ Their success, however, is limited to a narrow class of problem.

FEM applications which discretize partial differential equations with the Galerkin method,
resulting in symmetric positive definite system matrices, and which utilize quadratic or higher-
order test and trial functions, can efficiently exploit a family of hierarchic basis f~nc t ions .~ These
hierarchies are normally based on Legendre polynomials which are orthogonal in 1D and nearly
orthogonal in higher dimensions. The resulting system matrices are not only better conditioned
than if formed with the standard shape functions but also lend themselves to a special pre-
conditioning technique, the block diagonal hierarchic preconditioned CG m e t h ~ d . ~ One need
only solve the matrix problem formulated by the low-order test and trial functions, forming a
preconditioner for the higher-order polynomial approximation. This technique is now well
established for symmetric FEM e q ~ a t i o n s . ~

Unfortunately, the advantages of hierarchic basis functions do not extend readily to FEMs
which discretize partial differential equations containing convective terms. The Legendre poly-
nomials are no longer orthogonal in this setting and can result in a system which is more poorly
conditioned than by using the standard shape functions. Such applications are typical of the
mixed finite element methods in incompressible fluid dynamics. These systems are in general also
unsymmetric. Problems of this kind can be expressed in a general way by the solution of the
following matrix system at each linearization stage:

Ax = b, where A = [“1 and .=[;I.
L - C T M

Here K is a submatrix containing diffusive, advective and other linearized terms, C is the
divergence submatrix, M is a ‘stabilization’ submatrix, L is a ‘consistency’ submatrix, u are the
velocity unknowns and P the pressure unknowns. The last two submatrices have been introduced
by Hughes et aL6 in order to circumvent the BabuSka-Brezzi condition7v8 and arise from a
consistent distortion of the Galerkin test functions at element level. In most cases the matrix K
represents the difficulty because the advective terms it contains make it unsymmetric. Stokes flow
is a special case in that the global matrix may become symmetric. This is exploited by the
Eagrange-Galerkin method, which incorporates part of the advection into the right-hand-side
vector b and adds a mass matrix to the Stokes matrix on the left-hand side. For simple constant-
viscosity laminar flow one can then replace the continuous reforming and solution of the matrix
problem by a ‘resolution’ of the right-hand-side vector at each linearization stage; in turbulent
flow one can reform the matrix and right-hand side but now with repeated solutions to a
symmetric matrix problem. Lagrange-Galerkin is appropriate to truly transient flows. For steady
flows we believe it more appropriate to step through a linearization towards the steady state with
repeated solutions to the unsymmetric matrix problem Ax = b. It is to the solution of this class of
FEM systems that we apply unsymmetric CG methods, and unsymmetric Gauss elimination
implemented on Cray supercomputers, after presenting and mathematically deriving some of the
CG and unsymmetric CG methods.

2. THEORY OF CG

In this section we derive the basic CG algorithm starting from the Galerkin formulation. Then we
derive the bi-conjugate gradient (BICG), conjugate-gradient-squared (CGS) and conjugate-
residual (CGR) algorithms for unsymmetric matrices following Saad and Schultzg and
Sonneveld et al.,” where proofs we have omitted may be found.

FINITE ELEMENT FLOW SIMULATION 927

We consider A, a self-adjoint coercive linear operator from the inner product space V to
itself, i.e.

(0, A w) = (Av , w) Vv, w E V,
(v , A v) > 0 VVE v- { O } ,

where (. , .) is the inner product on V. In practice V is finite-dimensional and we shall assume
V = R", so we can identify A with its matrix representation. Let us introduce the norm 11 . I I A -
which is derived from the inner product

(X,Y)A-' = < x , A - ' y) .

This is an inner product since A is symmetric and positive definite. If b E V we seek x E V s.t.

AX = b. (2)
Suppose we have an initial guess xo which may be zero. We define the residual r to be r = b - Ax,
and so r , = b - Ax,. We then define the Krylov subspace K" = span (r, , Ar,, A'r,, . . . , A?,}.
The Galerkin method then finds a 'optimum' approximation to (2) by finding the unique

(3)

X , E X O + K"-' s.t.

r, = b - Ax,E(K"- ') ' .

This x, is optimum in the sense that, for all z E xo + K" - ' ,
IIb - Azll:-l = Ilb - Ax, + A(x , - z)l/:-l

= [I b - A x , , l \ ~ - i + ~ ~ A (x , , - z) ~ ~ ~ - ~ + ~ (~ - A x , , A - ' A (x , - z))

= Ilb - AX,lIi-l + IIA(x, - z)ll:-l, (4)

since the Galerkin condition (3) implies (b - Ax,, A- ' A(x, - z)) = 0. So we see that x ,
minimizes the A-'-norm of the residual b - Az for all Z E X ~ + K"- '.

Conversely, if x , E xo + K" - ' minimizes the A - '-norm of the residual then, for all z E K " - ',

d
da

*-(lib - A ~ ~ l l i - 1 + 2 ~ (b - AX, , A - ' A z) + a 2 (~ , A z)) l , = o = 0

+- (b - Ax,, z) + a(z , A z) l , = , = 0

* b - AXnE(K"- ') l ,

i.e. (3) is satisfied.

2.1. Practical formula for x

The above is all very well but does not give a practical method for finding the solution x, . By
exploiting various orthogonality relations we can derive a method for finding x,+ from x , and
certain other vectors.

Let us define the vector P k (the 'search direction') by j j k = xk + - xk. We can find the length of
P k as follows: we know that xk + minimizes 11 b - Ax, + I I A ~ i.e. if pk is a vector in the direction P k

928 D. HOWARD, W. M. CONNOLLEY AND J . S. ROLLETT

and ak is the ratio of the lengths of jik and p k , then

* - 2(b - Axkt P k) + 2ak(pk, A p k) =

= (b - P k) / (P k > Apk)

i.e*ak = (r k , Pk)/(Pk? Apk). (6)

(7)

Hence, if p k is in the direction of p k ,

p k = Pk(lk, P k) / (P k , A p k) .

We now prove two lemmas concerning some properties of the residuals and the search directions.

Lemma 1 (orthogonality and conjugacy of rk and P k)

The residuals and the search directions have the following properties.

A. (Ti, r j) = 0 if i # j .
B. (ri , p j) = 0 if i > j .
C. (pi, A p j) = 0 if i # j .

Proof. The first relation is clear since r i E (K i - l) L and hence r iE(KJ ') l V j < i - 1. For the
- riE(Ki-')' so (A p i , p j)

0
second, p j = (xj+l - x j) e K j and r i e (K i - ') ' - . Further, Ap, =
= 0 i f j < i, and 1C follows because A is self-adjoint.

Lemma 2 (spun of p s and r's)

The span of (r o , r l , . . . , r , } equals the span of { p o , p l , . . . , p , } , which equals K".

Proof: We prove this by induction. We note that since x1 exO + KO we have po E KO, so it
is true for n = 0. Suppose it is true for k. Then rk+ = rk + Ap,, by definition of p , so

assertion then follows from the fact that the p k are conjugate and therefore linearly independent,
CI

rk + 1 E Span { Kk, A K k } C K k + '. Also, P k + 1 = xk + 2 - xk + 1 E K k + Since X I E X O K'- '. The

whereas the rk are orthogonal and therefore linearly independent.

Now let us derive the recurrence formula for p . Since pk E K k we can write

for some scalars ci, and B',. Further, from Lemma lC,

(r , , Ap i) + /Z(<pi, Api) = 0, 1 = 0, . . . 7 - 1-

If I = 0, . . . , n - 2, A ~ , E K " - ' , so that (r, , , A p ,) = 0; thus we see that

J j , = O , j = O , . . . , n - 2 .
Therefore

(9)

P n = %(rn + B:-lPn-l) .

B, = - (r ,+ 1, APfl)l(Pfl, AP,).

(10)

(1 1)

We then define p, = P; + and use the fact that p, , pn- are conjugate to deduce that

FINITE ELEMENT FLOW SIMULATION 929

Therefore, if we have a search direction and a residual, (6), (11) and (10) define a new search
direction, which gives an updated approximation and a new residual. So starting from the
Galerkin property (3) we have derived the formulae for CG, i.e.

Algorithm: CG

r, = p , = b - Ax, .
Repeat until convergence:

an = (rn9 P n > / (P n , APn)
x n + 1 = x n + M n P n

r n + 1 =rn--nAPn
j?n= - (r n + i , A ~ n) / < ~ n , A ~ n)
~ n + 1 = rn+ 1 + Bnpn-

2.2. Alternative formulae for a and B
The orthogonality and conjugacy relations (Lemma 1) can be used to derive alternative formulae
for a and j?. Since (r n , pn -) = 0 and pn = rn + Pnpn - 1, (6) can be replaced by

an = (rn, rn)l(Pn, Apn).
To find the alternative for j? we note that

(r n + ~ ? r n + l) = (r n - a n A ~ n , r n + 1) = - an(APn, rn + 1)

(r n ? rn) = (P n , rn) = (P n , 'n+ 1 + %APn) = an(Pn9 APn),

B n = (rn + 1, rn + 1)l<rn, rn >.

and

so that (1 1) can be replaced by

(13)
Wong investigated these variants in the context of BICG" and found that (6) and (ll), the
'natural' versions, were marginally superior in terms of stability with respect to round-off error.
When we derive the CGS algorithm we shall need to use the alternative formula for j?.

2.3. A view of CG in terms of polynomials

A useful way of looking at CG in terms of error analysis and generating new algorithms is to
observe that rn E K", so the algorithm can be regarded as building up polynomials in A applied to
r , , i.e. we have rn = 4,,(A)r0, similarly, p n = On(A)ro, where 4n and 8, are polynomials of degree n.
We can therefore write an equivalent algorithm:

Algorithm: CG-polynomial

Repeat until convergence:
4, = 8, = 1.

a n = (4 n 9 e n > / (e n , * e n >

4 n + 1 = 4 n - %*&I

P n = - (4 n + l s $en)/(&'n, $6,)
e n + , = 4 n + 1 + P n e n .

Here the inner product on polynomials is defined by

930 D. HOWARD, W. M. CONNOLLEY A N D J. S. ROLLETT

and $ is the polynomial such that $(x) = x. This is an inner product for polynomials of degree less
than n, where n is the lowest integer such that r , = 0 (otherwise 1(A)r, might be identically zero
for non-zero polynomials). We shall use this form in the subsection below to derive a version of
Lemma 1 from the CG algorithm that will also hold for BICG

2.4. Derivation of Galerkin condition from CG algorithm

We can show that the CG algorithm given above implies Lemma 1, and so since the nth
residual generated by CG satisfies the Galerkin condition (3) it is minimal in the norm 1 1 : I I A - , .

Lemma 3

If 4,' and 8, are generated by the C G process, k = 0, . . . , rn (where CG has not converged at
step rn - l), then:

A. (4i, 4 j) = 0 if i # j .
B. (4i, O j) = 0 if i > j .
C. (Oi, $0,) = 0 if i # j .

Proof: We proceed by induction, using the formulae for c j i and Bi. The statement is certainly
true for rn = 0. Suppose it is true for rn = k - 1. We first extend 3B. If j < k - 1 then

then
(+ k , e j) = (4 k - 1 - a k - 1 $ d k - 1 , 0 j) = 0 by the inductive hypotheses 3B and 3 c . If j = k - 1

(4 k > e j > = (4 k - 1 - c (k - l $ O k - 1 , O k - 1)

= (4 k - 1, 0k - 1) - ak - 1 ($ O k - 1 , 0k - 1)
= O

by the form of a. We have therefore extended 3B to the case rn = k. Now consider 3A. If j < k - 1
then using the newly extended 3B we see that

(4 k ? d j) = (4 k 9 f l j - f l j - l o j - l) =o .
If j = k - 1 then

($ k , 4 k - 1) = (d k - 1 - elk- 1 $'k- 1 , d k - 1)

= (4k - 1 3 O k - 1 - p k - 2 4 k - 2) - a k - l ($ O k - 1 > ek - 1 - P k - 2 O k - 2)
= o

by 3A, 3B and the form of u. This extends 3A. Lastly, consider 3C. If j < k - 1 then using 3C and
the extended 3A we see that

(O k , $ O j) = (4 k + P k - 1 ek - 1 9 $ e j)

= (4 k y (4j - 4 j + 1) I a j)

= 0.
If j = k - 1 then

(e k , $ O k - l > = (4 k + P k - 1 ° k - l , $ f l k - l)

= (4 k , $ O k - 1) + P k - l (O k - 1 , $ O k - 1)
= o

by the form of p. This extends 3C and completes the proof. 0

FINITE ELEMENT FLOW SIMULATION 93 1

2.5. Derivation of BICG

In this section we derive the BICG algorithm. Our starting point will be the algorithm
CG-polynomial (although BICG can be derived as a Petrov-Galerkin method with test space
Ln = fro, ATTO, . . . (A T Y) instead of the same test space as the trial space, K, ; see Reference 12).
To derive the algorithm for BICG we shall define a ‘pseudo inner product’ (. , .)p on
polynomials by

(1, P) p = (ro)T(4A)P(A)ro). (15)

This is symmetric and bilinear but not positive definite for all A. Clearly, if A is symmetric, (14)
and (15) are identical. We can now define a new algorithm, the BICG algorithm, by writing the
CG algorithm with the pseudo inner product used to define a and P. For the practical form we
shall need to find numbers such as (&, +n)p for the scalar a. To find these we shall need new
vectors to carry along either 4;(A)ro or q5.(AT)ro. We chose the latter; defining F;, = &(AT)ro and
Pn = On(AT)r, we arrive at the BICG algorithm:

Algorithm: BICG

r , = po = fo = P o = b - Ax, .
Repeat until convergence:

an = (P n 9 r n) / (L APn)
xn+ 1 = xn + % P n

rn+1 = rn - U”AP,
f n + 1 = f n - anATFn

P n = <r;1+1,APn)l(Pn,APn)
P n + l = rn+1 + Pnrn
P , + l = r,+l + P n F n .

It is valid for unsymmetric matrices, and reduces to CG in the symmetric case. This is simply the
CG-polynomial algorithm written out in terms of vectors using the definition of the pseudo inner
product. Because of this the orthogonality relations (Lemma 1) still apply. Therefore the Galerkin
condition (3) also applies but only in the pseudo inner product. The optimality property (4) no
longer applies since the A - ’ ‘inner product’ is no longer an inner product and does not define a
norm.

2.6. Derivation of CGS

We proceed from the assumption that if the residual is 4,,(A)r0 it would be even better for
it to be &(A)ro. We can achieve this by ‘squaring’ the algorithm CG-polynomial to produce
the CGS algorithm. We note that although, if the algorithm converges, we can expect
l l~n(A)roll < Il4,(A)r0II, this does not imply that &(A) is a contraction and so we are not
guaranteed that II$;(A)r, 11 < II&(A)r, 1 1 . However, if the matrix is well preconditioned the CGS
algorithm seems to work better in practice.

For CGS we shall use the following forms for the scalars a and f i that occur in the BICG
algorithm:

an = (P n , rn>/(Pn,Apn), (16)

B n = G n + 1 9 rn + 1)I (r, 7 rn >- (17)

932 D. HOWARD, W. M. CONNOLLEY AND J. S. ROLLETT

Note that the formula for P is not the 'best' version for BICG as recommended by Yong," but, as
will become clear below, these are the only ones that can be used with CGS.

The central relations of the CG-polynomial algorithm are

If we square relations (18) and (19) and form 8, x (18) and dn+l x (19) we obtain (using (23) to
simplify (20))

We then have the following formula for a and P:

Defining

and X n to be the nth approximate solution, we see that we have everything required to convert
(20-26) into an algorithm:

Algorithm: CGS

Repeat until convergence:
Ro = Po = KO = b - A X , .

an = rgKn/rgAPn
H n = K n - anAPn

Rn+ 1 = Rn - anA(Hn + Kn)

X n + , = X n + a n (H n + K n)
P n = r i Rn + 1IriRn
P n + l = R n + l +2PnHn+P2Pn
Kn+ 1 = Rn+ 1 + PnHn.

There is an unfortunate clash of commonly used notation here: K n = en&(A)ro as used here
should be distinguished from K", the Krylov subspace.

FINITE ELEMENT FLOW SIMULATION 933

2.7. Choice of formula for

We shall briefly consider the choice of formula for B. For BICG we would normally choose to
use

B n = - (4 p + l , +@,>I(@,, +@n>, (31)

which is equivalent to (26) in exact arithmetic. In terms of CGS-type variables, the numerator
of (31) is given by

but to find AH, would involve an extra matrix-vector multiplication per iteration step.
Fortunately, we observe that the two formulae (26) and (31) will behave identically until

rounding errors become important. With a good enough preconditioner this will not occur.
Indeed, one can say that if rounding errors have become significant then convergence is taking
too many iterations and is liable to be uneconomic.

2.8. Derivation of CGR

We consider the CGR algorithm, which we shall derive from a Petrov-Galerkin process. We
retain the definition of K", and as for CG we consider xn E xo + K" - ' . However, we define a new
space L" = AK" and use this as the test space, i.e. we seek x, s.t.

r, = b - Ax,E(L"-')' . (32)

In this case x , is optimum in the sense that, for all Z E X ~ + K " - ' ,

since the Petrov-Galerkin condition (32) implies (b - Ax, + A(x, - z)) = 0. So we see that x,
minimizes the norm of the residual b - Az for all z E xo + K"- ' . Similarly we can prove that if x,
minimizes the residual then (32) is satisfied. This is true for unsymmetric A since we do not need to
invoke an A - norm.

As an aside, notice that we could consider this method as a version of CG if we redefine the
concept of 'orthogonal' to mean 'conjugate'. Then the Galerkin condition from which we derived
CG becomes

(r , , v)* = 0 V V E K ~ - ~

=>(I,, w) = 0 V W E L " - ~ ,
(34)

(35)

which is (32).
In a similar manner to our derivation of CG we derive the CGR algorithm for unsymmetric

matrices from (32). As before, d k = x, + - x,. We can find the length of j& as follows. We know
that x k + minimizes I[b - A& + /I, so if P k is a vector in the direction pk and ak is the ratio of the

934 D. HOWARD, W. M. CONNOLLEY AND J. S. ROLLETT

lengths of & to P k , then

b k = P k (r k ? Apk)/(Apk, (37)

The following modification of Lemma 1 (whose proof we omit since it is similar to the proof of
Lemma 1) holds.

Lemma 4. (Conjugacy and span of rk and P k)

The residuals and the search directions have the following properties:

A. (r i , A r j) = 0 if i > j .
B. (r i , Ap,) = 0 if i > j .
C. (Ap , , A p j) = 0 if i # j .
D. Span(ro,rl , . . . , r , } = span{p,,p,, . . . , p , } = K".

A significant deviation from the CG algorithm occurs in the derivation of the new search

As before, we can write
direction.

for some scalars a, and Pi. Multiplying the above by A, taking the inner product with Ap,, and
using Lemma 4C, we obtain

(Ar,,, A p ,) + Bf,(Ap,? A p ,) = 0, 1 = 0, . . . , n - 1 . (39)
However, it is no longer true that (Ar,,, A p ,) = 0, 1 = 0, . . . , n - 2, so we have instead

Bf, = - <Am, AP,) / (AP, , AP ,) , 1 = 0, . . . , n - 1;

that is, the summation in (38) does not collapse to one term. This means that the algorithm
becomes costly in terms of time and storage if the number of steps to reach convergence is not
small. In practice, therefore, we have to either truncate the summation to a certain number of
terms or restart the method after m steps, say, when rn is the maximum size of summation we can
permit. The former option runs the risk of omitting important terms and therefore causing failure
or stagnation; the latter throws away the information we have gained in the search directions. In
practice the latter option is to be preferred since the former has stagnated on all problems we have
tried for which 'cut-off' was exceeded.

2.9. Summary

We have displayed the theory for CG, BICG, CGS and CGR. Of these, CG is the most
common method to use for symmetric equations. For non-symmetric equations the choice is less

FINITE ELEMENT FLOW SIMULATION 935

clear and depends upon the problem being solved. Our experience (see Section 4) is that CGR is
not suitable unless reorthogonalization against all previous residuals can be afforded, and that
CGS is superior to BICG if the system is well conditioned (well preconditioned). Note that CGR
is mathematically equivalent to GMRES and ORTHOMTN in exact arithmetic; the restarted
versions are likewise equivalent.

3. THE MODEL PROBLEM

The numerical solution of free convection, of which the ‘double-glazing’ problem is an example, is
of great industrial importance. Applications range from the insulation of a home to the flow of
coolant in a nuclear reactor. The model for natural convection in a box cavity, considered in this
study, assumes the following:

(1) no flow-induced temperature variations arising from adiabatic compression or expansion

(2) no variation in fluid properties other than density with temperature
(3) variations in density are ignored except in as much as they give rise to a gravitational force

(4) a linear dependence of density on temperature
(5) an incompressible fluid with constant heat capacity per unit volume and no internal heat

(6) no forced convection, so that the velocity and temperature distributions are coupled
(7) no attempt to model turbulence effects at high Rayleigh numbers
(8) steady state conditions.

or from viscous dissipation

(the Boussinesq approximation)

generation

The problem geometry is a square/cubic box in 2D or 3D, filled with air, of side length D, and with
one wall heated to Tho, and one cooled to Kold. To non-dimensionalize the equations, we define
Prandtl and Rayleigh numbers by

Pr = -, P Ra = - g01D3p(T* hot - T* cold)
PP PP

and non-dimensional variables by

ui D AT x* =xi u* =- T * = -
D ’ P ’ That - Tcold’

where g is the gravitational acceleration acting in the x,-direction only, 01 is the coefficient of
volumetric expansion and is the coefficient of thermal diffusivity of the fluid. The system of
partial differential equations describing the ‘double-glazing’ problem becomes

au:
axi ~ = 0,

au* 1 aP*
J axj axi

U* + -~ - PrV2u* - RaPrT* = 0,

Besides the non-linearity of the convected derivative there exists a second and stronger one; it is
controlled by the Rayleigh number in equation (41). The product of Rayleigh and Prandtl

936 D. HOWARD. W. M. CONNOLLEY A N D J. S. ROLLETT

numbers couples the velocity and temperature domains and acts in the local gravitational
direction x2. The equations are solved as a coupled system.

The non-dimensional system (40H42) is discretized by the Galerkin FEM. Tri/biquadratic
basis functions are used for the velocity and temperature, and tri/bilinear (or linear) for the
pressure, in 3D and 2D respectively. The resultant non-linear equations are linearized (leading to
an unsymmetric matrix) by either Picard or Newton linearization.

The Picard iteration is for solution of the non-linear system

F(x) = 0. (43)

In the case of the finite element discretization of the Navier-Stokes equations this can be written
as

M(x)x = 0 (44)

and we can partition x into (x , I x ~) ~ , so that the elements in xG are those for which values are
known from boundary conditions. Partitioning M(x) similarly, we get

M,(x)x, = - MG(x)xG. (45)

(46)

We construct the Picard iteration by solving

M,(X("))X,("+ 1) = - MG(X("))X(Gn),

where the superscripts (n) and (n + 1) refer to iterative step numbers.
The Newton iteration differs in that we take

(47) J(x("+l) - x(")) = - F(x(")),

where J is the Jacobian matrix with elements

The Picard iteration in general converges linearly so that

l lX("+l)-XII <CIIx(")-x~I, (49)
where C is a constant and x is the true or exact solution, whereas the Newton iteration gives
quadratic convergence,

IIX("+l) --.XI1 < CIIx(") - x112. (50)
The counterbalancing advantage of Picard is that the region of x-space from which it will
converge to the true solution is much larger than that for Newton. Picard can therefore be helpful
when it is difficult to obtain a sufficiently close starting approximation.

The matrix resulting from the Picard iteration involves interaction between each unknown at a
given node and all unknowns at those nodes which share the same element@). As a simple 2D
example, an unknown at a corner node where four elements meet interacts with all unknowns in
every node of each of the four elements. For the Newton iteration the interactions are between the
same sets of unknowns but the matrix elements involve extra terms. Finite difference methods in
general give rise to fewer interactions. The matrices are therefore sparser but, because they
represent the same fundamental differential equations, are not likely to differ greatly in their
condition number. Although the authors have not studied the behaviour of iterative methods
with finite difference discretizations, they have no reason to think that rates of convergence would
be markedly different. We find that the condition of the matrix we obtain is not sensitive to the

FINITE ELEMENT FLOW SIMULATION 937

exact type of discretization we use, so long as this satisfies the conditions for a well posed
problem.

4. COMPARISON OF DIFFERENT ITERATIVE METHODS

We shall contrast the three ILU-preconditioned CG-like methods derived in Section 2 by
comparing their performance on a 2D version of the model problem, with a uniform mesh of 10
elements (biquadratic in u, u, t and continuous bilinear in p) to a side. We use ‘continuation’ in the
Rayleigh number Ra (see Reference 13) to advance from lo3 to lo6; we do two Newton
linearizations at a given Ra and use the ratio of these two steps to determine the increment in Ra.
The convergence criterion used for the methods was

IlrnII < IlroII x

This may seem lax, but it was adequate to preserve the ‘continuation path’ or sequence of
Rayleigh numbers generated; a tighter convergence criterion would have wasted effort, since
intermediate steps need only be solved sufficiently accurately to enable the code to proceed to the
next Ra.

Consider Figure 1, which shows the number of iterations required at each Newton step. We see
that the CGS method appears superior, although its behaviour is somewhat more erratic than
that of the BICG algorithm. The CGR method is on balance worst, particularly for higher
Rayleigh numbers. We have used the restarted method, with restart every 10th and 20th step. The
CGR methods failed to converge within 150 iterations for the last two Newton steps, although
they were converging. Each method has roughly the same cost per iteration, although the
restarted CGRn algorithms need up to an extra n inner products and vector additions per
iteration.

Notice that CGS and CGR show a pronounced oscillation in the number of iterations needed
for convergence, with peaks at even Newton steps. This is because we redo the ILU factorization
when we change Ra, and so the second Newton step of the pair is less well preconditioned. The
peaks in CGS and CGR seem to indicate that these methods need a good preconditioner to
converge.

We have also studied the performance of the ILU-preconditioned unsymmetric CG methods,
on a scalar machine, on 2D problems other than the model problem, namely laminar Stokes flow
over a backward-facing step (formulated as in (1) with L = 0 and M = 0). Computational times
are significantly lower than for a sparse direct method (i.e. an unsymmetric frontal solver where
the maximum frontwidth gets minimized by element-renumbering techniques). The CPU cross-
over point (the smallest problem for which the iterative method becomes faster than the direct

I r\ cGR10

loo -
5 0 -

0 0
2 4 6 8 10 12 14 16 18

Figure 1. Different iterative methods: number of iterations to convergence plotted against Newton step

938 D. HOWARD, W. M. CONNOLLEY AND J. S. ROLLETT

solution) appears for smaller sets of equations than in 3D discretizations, and speed-ups of two or
three are to be expected with 2D elements even for coarse meshes, even on problems where the
frontwidth is small, and even with quadratic six-noded Taylor-Hood triangles, which we have
tested. Memory (in-core storage of the sparse matrix and its preconditioner) would appear not to
present a problem in 2D. When the meshes are finer the increased sparsity results in greater
advantage for the iterative method. We speculate that there may well exist situations where, by
using the unsymmetric CG method rather than the frontal method, one could extend the range of
Reynolds numbers for which it could be possible to retain the Galerkin test functions (rather than
introduce Petrov-Galerkin or upwinding). This is because the 'cell' Reynolds numbers can be
kept small through smaller CPU costs for mesh refinement. It has also been ~ b s e r v e d ' ~ . ' ~ that
the performance of the iterative method significantly deteriorates with the Galerkin approxima-
tion as the cell Peclet or Reynolds number increases, but that it regains its competitive edge when
one adopts a Petrov-Galerkin method.

From the computations thus far we conclude that the ILU-preconditioned CGS method
appears best for this class of problems.

5. PROGRAMMING CONSIDERATIONS

In this section we remark on some of the aspects of implementation of the unsymmetric CG
methods and of sparse Gauss elimination methods on vector computers (i.e. Cray XMP and
Cray 2 series). These represent our experience to date with the implementation of two of the
algorithms and are by no means conclusive. The Gauss elimination implementation chosen in
this work is the unsymmetric frontal solver developed by Hood16 based on the frontal philo-
sophy postulated by Irons." This method has an advantage of a smaller active memory and
arbitrary nodal numbering when compared to an unsymmetric bandwidth solver. The CG
method tested in a 3D context on the Cray machines is the BICG method" which has been
described in Section 2.5.

We consider the 3D version of the model problem. Our objective is to study 3D finite elements
which employ high-order test and trial functions (triquadratic); these give best results for a fixed
number of unknowns when the solution is of sufficient smoothness. However, the global matrices
resulting from such discretizations are not very sparse for any realistic computation owing to the
large support of the functions (i.e. each node has many neighbours). This lack of sparsity is more
unfavourable to the iterative method. Conversely, the direct method is at odds with the model
problem because the frontwidth always increases with mesh refinement (Section 6). Our objective
is to locate the crossover point, the size of problem for which the iterative method becomes more
CPU-competitive than the sparse direct elimination method. A crucial consideration is the
relative optimality of implementation of the algorithms on the vector computer; this is of
significance to the dynamics of the crossover point. Finally, it is also important to understand
how much in-core memory is required at the crossover point because this can preclude the
practical use of the direct or iterative method.

The CPU growth curve with number of unknowns is much sharper for Gauss elimination than
for BICG. However, the frontal philosophy has one notable advantage over CG methods, one
which concerns memory management: equations are written to out-of-core memory in succession
and are only required once for the back-substitution stage. Unfortunately, the iterative nature of
CG requires the presence of the sparse matrix at each iteration. If the method is preconditioned
by an incomplete factorization, as much memory again is required to store these factors. Hence
we find that the practical realization of these methods depends crucially on the availability of fast
and cheap memory. On the Cray 2 we do have enough memory available to investigate quite

FINITE ELEMENT FLOW SIMULATION 939

large finite element problems; on the Cray XMP memory was a limiting factor. The local memory
of MIMD machines, such as the transputer, lends itself to a storage of all the individual element
matrices with the sparse vector by matrix multiplications of BICG performed on an element-by-
element basis. This procedure, however, is not so attractive on supercomputers since it involves
considerable extra memory owing to the equation overlap of individual finite element matrices.
On vector computers it is therefore advantageous to store the sparse matrix system in a
vector with pointers for column number and row start, as described for the symmetric case in
Reference 2. When ILU preconditioning is required it may be desirable to retain some zero
contributions occurring naturally (i.e. the pressure contribution to the continuity equation,
which can be zero) for better fill-in.

There is a fundamental difference between the efficient coding of a Gauss elimination and CG
methods on vector machines such as Cray XMP and Cray 2. The CPU efficiency of the CG
method depends on the spectral attributes of the matrix problem under consideration, while the
Gauss elimination expends the same amount of work irrelevant of this, and CPU expenditure is
solely controlled by the size of the frontwidth and the number of unknowns in the system. A
frontal solver is therefore more predictable than CG, where the number of iterations, and hence
the relative importance of the sparse matrix by vector multiplications, will vary depending on
spectral considerations. This means that areas of code which consume most of the CPU time are
more readily identified and optimized in the frontal solver.

In addition to this feature, the subtraction of the pivotal equation multiplied by the Gauss
factor from the current equation is by far the overwhelming CPU-consuming operation in Gauss
elimination. An example is given by our 3D implementation where the Cray XMP percentage
CPU stays above 60% even when the portion of code in charge of this operation is highly
optimized. This means that Amdahl's Law, a law of diminishing returns, does not significantly
affect our frontal solver implementation - optimize a few loops and you need not worry about
optimizing the rest of your code!

An efficient CAL* routine called PIX? was employed for the task of performing the Gauss
factor multiplication and equation subtraction mentioned earlier. PIX can be described by the
following pseudo-code:

for j = a , to b,
for i = u2 to b,
e (i + d , j + d) = e (i , j) - p (i) * q (j) / * 6 = 0 o r - 1
next i
next j

/* a, = 1 or lpc + 1; b , = Ipc - 1 or lcol
/* a, = 1 or lpr + 1; b, = lpr - 1; or lrow

where e is the frontal matrix, q is the normalized pivotal row, p is the vector of Gauss factors and
lpr, lpc, lrow and lcol are the pivotal row, pivotal column, number of rows and number of columns
in the matrix respectively. Judicious use of the WHENEQ Cray function in the prefront activity
and other loops inside the frontal routine together with forced vectorization of loops in the
element assembly stages resulted in a code that consistently sustained a 100 Mflop rate (on a
single processor on the Cray XMP 148 with background jobs running on the other processors).

The overwhelming CPU dominance of a single task or operation is less with the BICG method
than with Gauss elimination. In addition, the average megaflop rate of the BICG code is inferior
to the Gauss elimination code. This is due to the indirect addressing of the sparse matrix by vector

* Cray Assembler Language.
t Written by A. Mills of Cray U.K.

940 D. HOWARD, W. M. CONNOLLEY AND J. S. ROLLETT

multiply Cray intrinsic function SPAXPY; a contributing factor is that SPAXPY is usually
presented with a shorter vector length than PIX-the frontwidth is usually bigger than the
number of unknowns neighbouring a node.

We employed Hood’s frontal solver equipped with PIX on the Cray XMP and the MA32 direct
solver’9 on the Cray 2. However, MA32 is similar to Hood’s routine containing the Cray 2 CAL
version of PIX.

6. RESOURCE ESTIMATES AND WORK O N THE CRAY 2

The system of equations generated by the FEM become extremely large as the size of the problem
increases. Let us estimate the CPU time and storage requirements for both the frontal method
and ILU-preconditioned BICG for a regular cuboid or square mesh, in d dimensions (d = 2 or 3),
with g elements to a side. We shall tentatively assume that the time required is proportional to the
operation count; we return to this point later in respect of vectorization and indirect addressing.
To simplify the estimates we assume that all rows of the matrix have the same number of entries.
In practice, owing to edge effects and different node types, most rows will have fewer than the
maximum, so the average number will be assumed to be half the maximum. We can obtain the
following estimates for the variables e, n, z, b, s,f; t,, ti , t ,:

dimension
elements to a side
maximum entries per row
Average entries per row
number of equations
number of entries in matrix
half-bandwidth
space for L, U factors (each)
space for front
time for frontal solution
time for ILU decomposition
Time for one ILU-BICG step

d

9
em
e
n
z = en
b
s = bn
f = bZ
tf = b2n
ti = e2n/2
t , =4en

= 5d(d + 1)
= 5d(d + 1)/2

= (1 + d)2 (1 Og)d/2
= gd-’(l + 42d-1

- - g2(d - 1) (1 + 4222d-2

= (1 + d)2dgd

- - (1 + d)2 22d-1 g2d-1

= (2g)3d-z(l + d)3
= 5”(1 + d)32dgd/8
= 2[10d(l + d)’gd].

Then we can construct tables showing the growth laws for solution time and storage space in two
and three dimensions.

First consider the storage requirements shown in Table I. Note first that for the frontal method
the matrix itself is never fully assembled and the L, U factors are not stored in memory but on
disc, so that the storage-s is not required in core; however, twice this many reals must be
transferred to and from the disc. In 3D the asymptotically dominating figure is the front spacef,
whereas in 2 D the dominant figure is the matrix storage z. In 3D the point where the front takes

Table I. Storage estimates
~ -~

Storage required 2D 3D

Iterative 22 900g2 16000g3
Direct f 36g2 256g4

FINITE ELEMENT FLOW SIMULATION 94 1

more storage than the whole matrix occurs at around g = 64 which is an impracticably large
problem for current computers. Now consider the time requirements shown in Table 11. We see
that we need one more number to complete the estimates-the number of iterations needed to
solve the equations. This cannot be predicted in the way that the others can, but experience in 2D
and 3D indicates that 5g is a suitable estimate, depending on the hardness of the problem and the
convergence required. Multiplication of t , by 5g still leaves t,, the frontal solve time, as the
dominant cost.

If we consider the table of actual solution times,23 Table I11 (for solution to the 3D model using
finite elements with triquadratic velocity/temperature and trilinear continuous pressure), we see
that these theoretical calculations are considerably distorted in practice. The growth of solution
time for the BICG method is clearly slower than that of the frontal method, but the growth laws
are distorted by the vector efficiency achieved by the BICG and frontal methods. The former
rapidly achieves its full vector length (the number of entries per matrix row), even for small
problems, whereas the growing front size of the latter makes for more efficient vector lengths on
larger problems, and to some extent disguises the growth in number of operations. We note that
the frontal code uses direct addressing for the elimination process whereas the BICG method
references the matrix via indirect addressing, which slows the process; also, a crucial section of the
frontal solver was coded in CAL whereas the BICG routines were written in Fortran.

7. UNPRECONDITIONED BICG ON THE CRAY XMP/48

The memory limitations of the Cray XMP/48 discouraged the use of a preconditioner and
encouraged a study of the robustness or reliability of the unpreconditioned BICG method. On a
Cray 2 machine much more memory is available to store both the matrix and its preconditioner.

The model problem was solved with the 3D element of Figure 2, triquadratic velocity/
temperature and linear discontinuous pressure: we solve for the discontinuous pressure un-
knowns (no penalty method). This type of 3D element had been applied with success by one of us

Table 11. Time estimates

Time required 2 D 3D

Iterative ti 8500~2 1 mg 3

tb 5g 9000~3 1 m g 4
Direct tf 450g4 80009’

Table 111. Actual solution times (Cray 2) and storage, 3D

Gauge n z (1000s) Solve time

Direct Iterative

ILU BICG

3 684 90 0.7 1 0.66 0.55
4 1721 28 1 3.5 2.5 1 1.93
5 3492 646 13.78 6.7 1 5.6
6 6195 1250 50.0 13.4 12.7
7 10028 2110 ? 23.0 24.3

942 D. HOWARD, W. M. CONNOLLEY AND J. S. ROLLETT

velocity/ temperature pressure

Figure 2. Triquadratic velocity/temperature, linear discontinuous pressure brick element

(with or without a discrete penalty method) to calculate laminar and turbulent flow through a
tight 90" bend of circular cross-section based on the laser Doppler experiments of Enayet et dzo
and using a direct frontal solver on the Cray XMP/48.21*22 Elements of this kind were arranged
into a box of gauge 3 (27 elements) with grading 1 : 2: 1, and taken through a set of intermediate
Rayleigh number continuation steps to a target of Ra = 31 000. Here we used the Picard
linearization. For the reasons discussed in Section 3 we find that the continuation process is not
crucial to the Picard linearization, but that it becomes more important for problems which
employ Newton's method, which has a much smaller 'ball of attraction' than the Picard
linearization.

After the boundary conditions are eliminated, a matrix of 729 unconstrained temperature,
pressure and velocity degrees of freedom is solved at each Picard linearization. Table IV
compares the number of internal iterations or work required by BICG at each Picard step to an
estimate for the spectral condition of the matrix. The estimate is the ratio between the largest and
smallest pivots encountered in the frontal elimination corresponding to the same matrix problem.
The pivots can give a warning of small eigenvalues, but when the matrix is unsymmetric this is
only a rough guide since the computation of singular values is required. Nevertheless, from this
table we notice a trend of increased BICG work with higher Rayleigh number and poorer spectral
condition ratio. We find that the Average BICG steps per iteration are 276 for Ra = 1000,312 for
Ra = 4000, 392 for Ra = 10000,439 for Ra = 19000 and 526 for Ra = 31 000. The number of
unconstrained degrees of freedom in this problem is 729 and the results seem to indicate that at
Ra = 31 000 we are slightly exceeding this number and violating the exact termination property
of CG methods owing to computer round-off error. Beyond Ra = 31 000 convergence cannnot be
attained even with the direct method, probably owing to a numerical bifurcation which occurs
much earlier than the real, or physical, bifurcation and is caused by the coarseness of the mesh.
Hence we experience that for problems with moderate Rayleigh numbers the unpreconditioned
BICG method is as robust and as reliable as the frontal elimination method with pivoting.

The termination criterion for convergence of the BICG method was derived from a comparison
between direct and iterative methods. The problem degrees of freedom not converged at each
Picard linearization are those which fail to satisfy a convergence estimator. The following are two
likely candidates for estimator:

where jcpi stands for a degree of freedom numbered i, of type j (i.e. pressure, velocity, etc.), and n is
the current linearization step. A converged iterative process is defined as one in which all degrees
of freedom have satisfied one of the above criteria to a value less than some tolerance (i.e. 0.05 or
5 % change).

FINITE ELEMENT FLOW SIMULATION 943

Table IV. Unpreconditioned BICG versus frontal: spectral analysis and BICG iterations

Frontal BICG

Picard norm
step Ra Pio,,, Piurnax P (4 residual work

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

1000
1000
4000
4000
4000

10000
10000
10000
19000
19000
19000
3 1000
31000
3 1000
31000
31000
3 1000
31000
31000
31000

0.696 x
0.695 x
0.695 x
0.687 x
0.686 x lo-'
0.687 x
0.664 x lo-'
0.669 x
0-673 x
0.637 x
0.650 x
0.654 x

0.633 x
0.631 x
0.626 x
0.632 x
0.628 x
0.629 x low3
0.630 x

0613 x 10-3

0.269 x 10"
0.269 x lo+'
0.269 x lo+'
0.269 x 10"
0.269 x 10"
0.270 x 10"
0.270 x 10"
0.270 x 10"
0.271 x 10"
0.271 x 10"
0.272 x 10"
0272 x 10''
0.273 x 10"
0.274 x 10"
0.274 x 10"
0.274 x 10"
0.274 x 10"
0.274 x lo+'
0.274 x 10''
0.274 x 10"

0.387 x

0.387 x l o f4
0.392 x l o f4
0.393 x
0.392 x
0.406 x

0-402 x l o f4
0,425 x

0387 x 10+4

0.404 x 10+4

0.418 x 10+4
0.416 x 10+4
0.445 x 10+4

0437 x 10+4

0435 x 10+4

0.433 x
0.434 x

0.433 x
0.436 x

0.435 x

0.989 x 10-7
0.872 x
0.819 x
0.959 x
0.772 x
0.256 x
0.536 x
0.581 x
0.683 x
0.354 x
0.601 x

0.562 x
0.912 x
0.603 x
0.280 x
0.597 x
0.397 x
0.696 x
0.941 x

0749 x 10-7

258
295
294
336
307
332
478
366
380
504
435
413
623
476
463
538
523
484
487
734

The second criterion A, is unstable in the presence of a discrete zero value of the solution. A1 is,
however, stable but is not as appropriate as A, when we are interested in the local accuracy and
flow orientation in regions where the velocities may be small in comparison with the bulk flow.
We choose A, in this experiment and denote the number of problem unknowns not satisfying this
condition, to a given tolerance, by N , in Table V. This gives values of N, for various choices of the
BICG norm residual termination criterion and compares them with the solution by the frontal
direct method at each Picard linearization at Ra = 1000. It can be seen that only a norm residual
of lo-' or smaller (or square of norm residual smaller than is suitable to match the results
by the direct solver. It is debatable whether the choice of a larger norm residual convergence
criterion early in the Rayleigh continuation process followed by a very small criterion at the
target Rayleigh number will reduce the overall cost of a computation. We believe that will depend
on the right balance between the work required for extra linearizations incurred by a larger
residual convergence criterion and total BICG steps saved at all the intermediate continuation
stages. As shown in the table, a large value of the residual criterion can lead to poor convergence
of the non-linear process.

Finally for this Cray-XMP/48 example we show the singular value distribution of two
Rayleigh number cases. Figure 3 plots logarithm of singular value versus singular value
number - Ra = lo00 as solid line and Ra = loo00 as a dotted line - computed using
LINPACK. Both of these lines exhibit a long 'plateau' where the singular values hardly change,
but the Ra = loo00 curve has a sharper slope and requires more iterations of BICG. There is a
sharp drop in the curve which corresponds to the pressure unknowns. These act as Lagrange
multipliers for the incompressibility constraint and can be seen to make the matrix problem a
'difficult' one.

944 D. HOWARD, W. M. CONNOLLEY AND J. S. ROLLETT

6

6

8

lo

12

14

16

18

Table V. Effect of changing the BICG norm residual criterion; A2 criterion = 5%; Ra = loo0

--

--

--

--

- -

--

--

- -

N 2 convergence measure

BICG norm residual criterion
Picard Frontal
Step direct 3.2 10-5 1.0 x 10-5 1.0 x 10-6 1.0 x lo-’

2
3
4
5
6
7
8
9

10
11
12

402
232
28
4
4
0

435
270
62
33
29
36
32
35
39
30
30

412
242
59
36
32
30
24
28
27
30
18

418 402
240 232
35 28
11 4
8 4
5 0
6
4
2
7
0

Figure 3. Singular value decomposition for two Rayleigh numbers at two Picard linearization stages in Table IV

945 FINITE ELEMENT FLOW SIMULATION

ACKNOWLEDGEMENTS

W. M. Connolley wishes to acknowledge support from an SERC/CASE studentship. D. Howard
wishes to acknowledge funding from Rolls Royce through a Pembroke College Junior Research
Fellowship. We also wish to thank the following for use of their computing facilities: AERE,
Harwell (Cray 2) and RAL (Cray XMP/48).

REFERENCES
1. 0. Zienkiewicz, The Finite Element Method, 3rd edn, McGraw-Hill, New York, 1977.
2. 0. Axelsson and V. A. Barker, Finite Element Solution of Boundary Value Problems, Academic Press, New York, 1984.
3. A. Peano, ‘Hierarchies of conforming finite elements for plane elasticity and plate bending’, Comput. Math. Appl., 2,

4. 0. C. Zienkiewicz and A. Craig, ‘Adaptive refinement, error estimates, multigrid solution and hierarchic finite element
method concepts’, Chap. 2 oE Accuracy estimates and adaptive refinements in finite element computations (ARFEC),
pp. 25-60, I. Babuika, 0. Z. Zienkiewicz, J. Gago, and E. R. de Oliveira (Eds.) John Wiley & Sons, 1986.

5. M. A. Crisfield, ‘New solution procedures for linear and non-linear finite element analysis’, in J. R. Whiteman (ed.),
MAFELAP 1984, Academic Press, New York, 1985, pp. 49-81.

6. T. J. R. Hughes, L. P. Fraca and M. Balestra, ‘A new finite element formulation for computational fluid dynamics:
V. Circumventing the Babuika-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem
accommodating equal-order interpolations’, Comput. Methods Appl. Mech. Eng., 59, 85-99 (1986).

211-224 (1976).

7. 1. BabuSka, ‘The finite element method with Lagrange multipliers’, Numer. Methods, 20, 179-192 (1973).
8. F. Brezzi, ‘On the existence, uniqueness, and approximation of saddle point problems arising from Lagrange

multipliers’, RAIRO, 8, 129-151 (1974).
9. Y. Saad and M. H. Schultz, ‘Conjugate gradient-like algorithms solving nonsymmetric linear systems’, Yale Research

Report YALEUIDCSIRR-283, 1983.
10. P. Sonneveld, P. Wesselling and P. M. deZeeuw, ‘Multigrid and conjugate gradient methods’, in D. J. Paddon and

H. Holstein (eds.), Multigrid Methods for Integral and Diflerential Equations, 1985, IMA Conference Series, no. 3,
Clarendon Press, Oxford, 1985.

1 1 . Y. S. Wong, ‘Iterative methods for problems in numerical analysis’, D.Phi1. Thesis, Numerical Analysis Group, Oxford
University Computing Laboratory, 1978.

12. Y. Saad, ‘Krylov subspace methods on supercomputers’, Research Institute for Advanced Computer Science, NASA
Ames Research Center, Technical Report 88.40, 1988.

13. S . Sivaloganathan, ‘Iterative methods for large sparse systems of equations’, D.Phil. Thesis, Numerical Analysis
Group, Oxford University Computing Laboratory, 1982.

14. D. Benson, personal communication.
15. T. Murdoch, personal communication.
16. P. Hood, ‘Frontal solution program for unsymmetric matrices’, Int. j. numer. methods eng., 10, 379-399 (1978).
17. B. M. Irons, ‘A frontal solution program’, In t . j. numer. methods eng., 2, 5-32 (1970).
18. R. Fletcher, ‘Conjugate gradient methods for indefinite systems’, in G. A. Watson (ed.), Proc. Dundee Con$ on

19. I. Duff, ‘MA32-A package for soiving sparse unsymmetric matrices using the frontal method’, Harwell Report AERE

20. M. M. Enayet, M. M. Gibson, A. M. K. P. Taylor and M. Yianneskis, ‘Laser doppler measurements of laminar and

21. D. Howard, ‘Numerical techniques for.simulation of three dimensional swirling flow’, Ph.D. Thesis, Department of

22. D. Howard, ‘Finite element computation of flows through bends’, European Research Community on Flow and

23. W. M. Connolley, ‘Preconditioning of iterative methods for linearised or linear systems’, D.Phil. Thesis, Numerical

Numerical Analysis; Lecture Notes in Mathematics, Vol. 506, Springer, Berlin, pp. 73-89, 1976.

R-10079, HMSO, London, 1981.

turbulent flow in a pipe bend’, NASA Contract Report 3551, Contract NASW-3258, May 1982.

Civil Engineering, Univerisity College of Swansea, 1988.

Combustion (ERCOFTAC) Bulletin, No. I l l , July 1989.

Analysis Group, Oxford University Computing Laboratory, in preparation.

